

Product Specification PE97632 DIE

3.5 GHz Delta-Sigma Modulated Fractional-N Frequency Synthesizer for Low Phase Noise Applications

Product Description

Peregrine's PE97632 is a high performance fractional-N PLL capable of frequency synthesis up to 3.5 GHz. The device is designed for superior phase noise performance while providing an order of magnitude reduction in current consumption, when compared with the existing commercial space PLLs.

The PE97632 features a 10/11 dual modulus prescaler. counters, a delta sigma modulator and a phase comparator as shown in Figure 1. Counter values are programmable through either a serial interface or directly hard-wired.

The PE97632 is optimized for commercial space applications. Single event latch-up (SEL) is physically impossible. Fabricated in Peregrine's patented UltraCMOS® technology, the PE97632 offers excellent RF performance and intrinsic radiation tolerance.

Features

- 3.5 GHz operation
- ÷10/11 dual modulus prescaler
- Phase detector output
- Serial or direct mode access
- Frequency selectivity: comparison frequency / 2¹⁸
- Low power: –35 mA @ 3.3V
- Radiation tolerant
- Ultra-low phase noise
- Pin compatible with the PE9763 (reference application note AN24 at www.psemi.com)

Figure 1. Block Diagram

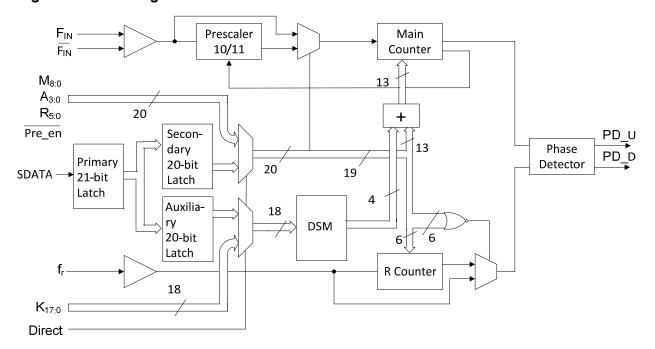
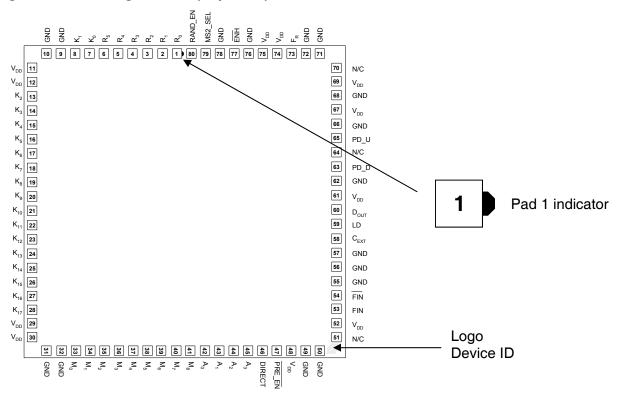



Figure 2. Pin Configurations (Top View)

Table 1. Pin Descriptions

Pad No.	Pad Name	Valid Mode	Туре	Description
1	R ₀	Direct	Input	R counter bit0 (LSB).
2	R ₁	Direct	Input	R counter bit1.
3	R_2	Direct	Input	R counter bit2.
4	R ₃	Direct	Input	R counter bit3.
5	R ₄	Direct	Input	R counter bit4.
6	R ₅	Direct	Input	R counter bit5 (MSB).
7	K ₀	Direct	Input	K counter bit0 (LSB).
8	K ₁	Direct	Input	K counter bit1.
9	GND		Downbond	Ground.
10	GND		Downbond	Ground.
11	V_{DD}		Note 1	Digital core V _{DD} .
12	V_{DD}		Note 1	Digital core V _{DD} .
13	K ₂	Direct	Input	K counter bit2.
14	K ₃	Direct	Input	K counter bit3.
15	K ₄	Direct	Input	K counter bit4.
16	K ₅	Direct	Input	K counter bit5.
17	K ₆	Direct	Input	K counter bit6.

Table 1. Pad Descriptions (Cont.)

. 45.6	au Desci	.puoo	(551111)	
Pad No.	Pad Name	Valid Mode	Туре	Description
18	K ₇	Direct	Input	K counter bit7.
19	K ₈	Direct	Input	K counter bit8.
20	K ₉	Direct	Input	K counter bit9.
21	K ₁₀	Direct	Input	K counter bit10.
22	K ₁₁	Direct	Input	K counter bit11.
23	K ₁₂	Direct	Input	K counter bit12.
24	K ₁₃	Direct	Input	K counter bit13.
25	K ₁₄	Direct	Input	K counter bit14.
26	K ₁₅	Direct	Input	K counter bit15.
27	K ₁₆	Direct	Input	K counter bit16.
28	K ₁₇	Direct	Input	K counter bit17 (MSB).
29	V_{DD}		Note 1	Digital core V _{DD} .
30	V_{DD}		Note 1	Digital core V _{DD} .
31	GND		Downbond	Ground.
32	GND		Downbond	Ground.
33	M ₀	Direct	Input	M counter bit0 (LSB).
34	M ₁	Direct	Input	M counter bit1.
35	M_2	Direct	Input	M counter bit2
36	M_3	Direct	Input	M counter bit3.
	M_4	Direct	Input	M counter bit4.
37	S_WR	Serial	Input	Serial load enable input. While S_WR is "low", SDATA can be serially clocked. Primary register data are transferred to the secondary register on S_WR rising edge.
38	M_5	Direct	Input	M counter bit5.
30	SDATA	Serial	Input	Binary serial data input. Input data entered MSB first.
	M_6	Direct	Input	M counter bit6.
39	SCLK	Serial	Input	Serial clock input. SDATA is clocked serially into the 21-bit primary register (E_WR "low") or the 8-bit enhancement register (E_WR "high") on the rising edge of SCLK.
40	M_7	Direct	Input	M counter bit7.
41	M ₈	Direct	Input	M counter bit8 (MSB).
42	A_0	Direct	Input	A counter bit0 (LSB).
	A_1	Direct	Input	A counter bit1.
43	E_WR	Serial	Input	Enhancement register write enable. While E_WR is "high", SDATA can be serially clocked into the enhancement register on the rising edge of SCLK.
44	A_2	Direct	Input	A counter bit2.
45	A ₃	Direct	Input	A counter bit3 (MSB).
46	DIRECT	Both	Input	Direct mode select. "High" enables direct mode. "Low" enables serial mode.
47	Pre_en	Direct	Input	Prescaler enable, active "low". When "high", F _{IN} bypasses the prescaler.
48	V_{DD}		Note 1	Digital core V _{DD} .
49	GND		Downbond	Ground.
50	GND		Downbond	Ground.
		•		·

Table 1. Pad Descriptions (Cont.)

Pad No.	Pad Name	Valid Mode	Туре	Description
51	NC	Both		No connect.
52	V_{DD}		Note 1	Prescaler V _{DD} .
53	F _{IN}	Both	Input	Prescaler input from the VCO. 3.5 GHz max frequency.
54	F _{IN}	Both	Input	Prescaler complementary input. A bypass capacitor should be placed as close as possible to this pin and be connected in series with a 50Ω resistor directly to the ground plane.
55	GND		Downbond	Ground.
56	GND		Downbond	Ground.
57	GND		Downbond	Ground.
58	C _{EXT}	Both	Output	Logical "NAND" of PD_ \overline{U} and PD_ \overline{D} terminated through an on chip, 2 k Ω series resistor. Connecting C _{EXT} to an external capacitor will low pass filter the input to the inverting amplifier used for driving LD.
59	LD	Both	Output	Lock detect and open drain logical inversion of C_{EXT} . When the loop is in lock, LD is high impedance, otherwise LD is a logic low ("0").
60	D _{OUT}	Both	Output	Data out function, enabled in enhancement mode.
61	V_{DD}		Note 1	Output driver/V _{DD} .
62	GND		Downbond	Ground.
63	PD_D	Both	Output	$PD_{\overline{D}}$ pulses down when f_p leads f_c .
64	NC	Both		No connect.
65	PD_Ū	Both	Output	$PD_{\overline{U}}$ pulses down when f_c leads f_p .
66	GND		Downbond	Ground.
67	V_{DD}		Note 1	Output driver/V _{DD} .
68	GND		Downbond	Ground.
69	V_{DD}		Note 1	Phase detector V _{DD} .
70	NC	Both		No connect.
71	GND		Downbond	Ground.
72	GND		Downbond	Ground.
73	f _r	Both	Input	Reference frequency input.
74	V_{DD}		Note 1	Reference V _{DD} .
75	V_{DD}		Note 1	Digital core V _{DD} .
76	GND		Downbond	Ground.
77	ENH	Both	Input	Enhancement mode. When asserted low ("0"), enhancement register bits are functional.
78	GND		Downbond	Ground.
79	MS2_SEL	Both	Input	MASH 1-1 select. "High" selects MASH 1-1 mode. "Low" selects the MASH 1-1-1 mode.
80	RND_SEL	Both	Input	K register LSB toggle enable. "1" enables the toggling of LSB. This is equivalent to having an additional bit for the LSB of K register. The frequency offset as a result of enabling this bit is the phase detector comparison frequency / 2 ¹⁹ .

Notes: 1. All V_{DD} pads are connected by diodes and must be supplied with the same positive voltage level. 2. All digital input pads have 70 k Ω pull-down resistors to ground.

Table 2. Absolute Maximum Ratings

Symbol	Parameter/Condition	Min	Max	Unit
V_{DD}	Supply voltage	-0.3	4.0	٧
Vı	Voltage on any input	-0.3	V _{DD} + 0.3	٧
l _i	DC into any input	-10	+10	mA
lo	DC into any output	-10	+10	mA
T _{STG}	Storage temperature range	-65	+150	°C

Table 3. Operating Ratings

Symbol	Parameter/Condition	Min	Max	Unit
V _{DD}	Supply voltage	2.85	3.45	V
T _A	Operating ambient temperature range	-40	+85	°C

Table 4. ESD Ratings

Symbol	Parameter/Condition	Level	Unit
V	ESD Voltage Human Body Model on all pins except pin 52 (Note 1)	1000	V
V_{ESD}	ESD Voltage Human Body Model on pin 60 (Notes 1 and 2)	300	V

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified in Table 4.

Latch-Up Immunity

Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up.

ELDRS

UltraCMOS devices do not include bipolar minority carrier elements and; therefore, do not exhibit enhanced low-dose-rate sensitivity.

^{1.} Periodically sampled, not 100% tested. Tested per MIL-STD-883,

^{2.} Pin 60 is a test pin only. It is not used in normal operation.

Table 5. DC Characteristics @ V_{DD} = 3.30V, -40 °C < TA < +85 °C, unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
	Operational guaphy gurrent	Prescaler enabled, V _{DD} = 2.85–3.45V	20	35	45	mA
I _{DD}	Operational supply current	Prescaler disabled, V _{DD} = 2.85–3.45V	8	15	23	mA
All digital inp	uts: K[17:0], R[5:0], M[8:0], A[3:0], Direct, Pre_	en, Rand_en, M2_sel, E	NH (contains a 70	kΩ pull-down	resistor)	
V _{IH}	High level input voltage	V _{DD} = 2.85–3.45V	$0.7 \times V_{DD}$			V
V _{IL}	Low level input voltage	V _{DD} = 2.85–3.45V			0.3 × V _{DD}	V
I _{IH}	High level input current	$V_{IH} = V_{DD} = 3.45V$			100	μΑ
I _{IL}	Low level input current	$V_{IL} = 0, V_{DD} = 3.45V$	-1			μΑ
Reference div	vider input: f _r					
I _{IHR}	High level input current	$V_{IH} = V_{DD} = 3.45V$			100	μΑ
I _{ILR}	Low level input current	$V_{IL} = 0, V_{DD} = 3.45V$	-100			μΑ
Counter and	phase detector outputs: PD_D, PD_U					
V_{OLD}	Output voltage LOW	I _{OUT} = 6 mA			0.4	V
V_{OHD}	Output voltage HIGH	$I_{OUT} = -3 \text{ mA}$	V _{DD} -0.4			V
Digital test ou	utputs: D _{out}					
V _{OLD}	Output voltage LOW	I _{OUT} = 200 μA			0.4	V
V_{OHD}	Output voltage HIGH	I _{OUT} = -200 μA	V _{DD} -0.4			V
Lock detect o	outputs: (C _{EXT} , LD)		1		<u> </u>	
V _{OLC}	Output voltage LOW, C _{EXT}	I _{OUT} = 0.1 mA			0.4	V
V _{OHC}	Output voltage HIGH, C _{EXT}	$I_{OUT} = -0.1 \text{ mA}$	V _{DD} -0.4			V
V _{OLLD}	Output voltage LOW, LD	I _{OUT} = 1 mA			0.4	V

Table 6. AC Characteristics @ V_{DD} = 3.30V, -40 °C < TA < +85 °C, unless otherwise specified⁵

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Control inte	rface and latches (see Figures 3 and 4)	'				•
f _{Clk}	Serial data clock frequency ¹				10	MHz
t _{ClkH}	Serial clock HIGH time		30			ns
t _{ClkL}	Serial clock LOW time		30			ns
t _{DSU}	SDATA set-up time to SCLK rising edge		10			ns
t _{DHLD}	SDATA hold time after SCLK rising edge		10			ns
t _{PW}	S_WR pulse width		30			ns
t _{CWR}	SCLK rising edge to S_WR rising edge		30			ns
t _{CE}	SCLK falling edge to E_WR transition		30			ns
t _{WRC}	S_WR falling edge to SCLK rising edge		30			ns
t _{EC}	E_WR transition to SCLK rising edge		30			ns
Main divide	r (including prescaler) ⁴					
		External AC coupling 275 MHz ≤ Freq ≤ 3200 MHz	-5		5	dBm
P_{Fin}	Input level range	External AC coupling 3.2 GHz < Freq \leq 3.5 GHz 3.15V \leq VDD \leq 3.45V	0		5	dBm
Main divide	r (prescaler bypassed) ⁴			-1		
F _{IN}	Operating frequency		50		300	MHz
$P_{F_{IN}}$	Input level range	External AC coupling	-5		5	dBm
Reference o	livider			-1		
f _r	Operating frequency ³				100	MHz
P _{FR}	Reference input power ²	Single ended input	-2		10	dBm
Phase dete	etor					
f _c	Comparison frequency ³				50	MHz
SSB phase	noise (F _{IN} = 1.9 GHz, f _r = 20 MHz, f _c = 20 MHz, L	BW = 50 kHz, V _{DD} = 3.3V, Temp	= +25 °C)4		1	
Φ_{N}	Phase noise	100 Hz offset		-89	-83	dBc/Hz
Φ_{N}	Phase noise	1 kHz offset		-96	-91	dBc/Hz
Φ_{N}	Phase noise	10 kHz offset		-101	-96	dBc/Hz
SSB phase	noise (F_{IN} = 1.9 GHz, f_r = 20 MHz, f_c = 20 MHz, L	BW = 50 kHz, V _{DD} = 3.0V, Temp	= +25 °C) ⁴	1	1	1
Ф _N	Phase noise	100 Hz offset	•	-84	-70	dBc/Hz
Φ _N	Phase noise	1 kHz offset		-92	-81	dBc/Hz
Φ _N	Phase noise	10 kHz offset		-100	-89	dBc/Hz

1. f_{Clk} is verified during the functional pattern test. Serial programming sections of the functional pattern are clocked at 10 MHz to verify f_{Clk} specification.

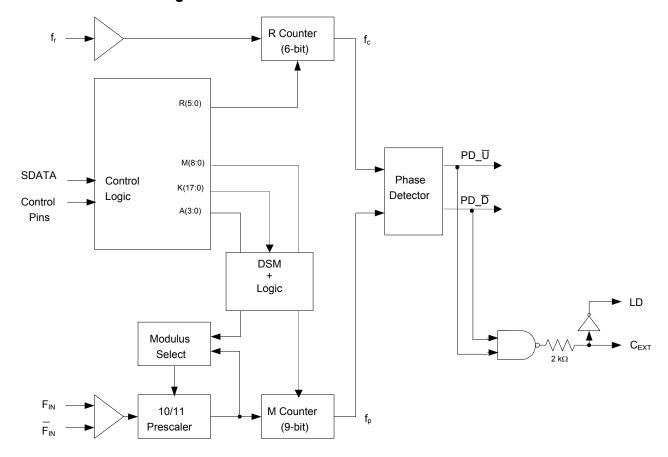
^{1.} Clk is Verified during the functional patient lest. Serial programming sections of the functional patient are clocked at 10 kin2 to Verify I_{Clk} specification.

CMOS logic levels can be used to drive reference input if DC coupled. Voltage input needs to be a minimum of 0.5 V_{PP}. For optimum phase noise performance, the reference input falling edge rate should be faster than 80 mV/ns.

3. Parameter is guaranteed through characterization only and is not tested.

4. Parameter is verified during the element evaluation and are not tested for die sales.

5. All information in *Table 6* is not tested at wafer sort.



Functional Description

The PE97632 consists of a prescaler, counters, an 18-bit delta-sigma modulator (DSM) and a phase detector. The dual modulus prescaler divides the VCO frequency by either 10/11, depending on the value of the modulus select. Counters "R" and "M" divide the reference and prescaler output, respectively, by integer values stored in a 20-bit register. An additional counter ("A") is used in the modulus select logic. The DSM modulates the "A" counter outputs in order to achieve the desired fractional step.

The phase-frequency detector generates up and down frequency control signals. Data is written into the internal registers via the three wire serial bus. There are also various operational and test modes and a lock detect output.

Figure 3. Functional Block Diagram

Main Counter Chain

Normal Operating Mode

Setting the Pre en control bit "low" enables the ÷10/11 prescaler. The main counter chain then divides the RF input frequency (FIN) by an integer or fractional number derived from the values in the "M" and "A" counters and the DSM input word K. The accumulator size is 18 bit, so the fractional value is fixed from the ratio K/2¹⁸. There is an additional bit in the DSM that acts like an extra bit (19th bit). This bit is enabled by asserting the pin RAND_SEL to "high". Enabling this bit has the benefit of reducing the spurious levels. However, a small frequency offset will occur. This positive frequency offset is calculated with the following equation.

$$f_{\text{offset}} = [F_R / (R+1)] / 2^{19}$$
 (1)

All of the following equations do not take into account this frequency offset. If this offset is important to a specific frequency plan, appropriate account needs to be taken.

In the normal mode, the output from the main counter chain (f_p) is related to the VCO frequency (F_{IN}) by the following equation:

$$f_P = F_{IN} / [10 \times (M+1) + A + K/2^{18}]$$
 (2)
where $A \le M + 1$, $1 \le M \le 511$

When the loop is locked, F_{IN} is related to the reference frequency (F_R) by the following equation:

$$F_{IN} = [10 \times (M+1) + A + K/2^{18}] \times [F_R/(R+1)]$$
 (3)
where $A \le M + 1$, $1 \le M \le 511$

A consequence of the upper limit on A is that F_{IN} must be greater than or equal to $90 \times [F_R / (R+1)]$ to obtain contiguous channels. The A counter can accept values as high as 15, but in typical operation it will cycle from 0 to 9 between increments in M.

Programming the M counter with the minimum allowed value of "1" will result in a minimum M counter divide ratio of "2".

Prescaler Bypass Mode (*)

Setting the frequency control register bit Pre_en "high" allows F_{IN} to bypass the $\div 10/11$ prescaler. In this mode, the prescaler and A counter are powered down, and the input VCO frequency is divided by the M counter directly. The following equation relates F_{IN} to the reference frequency F_{R} :

$$F_{IN} = (M+1) \times [F_R / (R+1)]$$
 where $1 \le M \le 511$ (*) Only integer mode

In frequency bypass mode, neither A counter or K counter is used. Therefore, only integer-N operation is possible.

Reference Counter

The reference counter chain divides the reference frequency, F_B , down to the phase detector comparison frequency, fc.

The output frequency of the 6-bit R counter is related to the reference frequency by the following equation:

$$f_c = F_R / (R+1)$$
 (5)
where $0 \le R \le 63$

Note that programming R with "0" will pass the reference frequency, F_R, directly to the phase detector.

Register Programming

Serial Interface Mode

While the E_WR input is "low" and the S_WR input is "low", serial input data (SDATA input), B₀ to B₂₀, are clocked serially into the primary register on the rising edge of SCLK, MSB (B₀) first. The LSB is used as address bit. When "0", the contents from the primary register are transferred into the secondary register on the rising edge of either S WR according to the timing diagrams shown in Figure 4. When "1", data is transferred to the auxiliary register according to the same timing diagram. The secondary register is used to program the various counters, while the auxiliary register is used to program the DSM.

Data are transferred to the counters as shown in Table 8.

While the E_WR input is "high" and the S_WR input is "low", serial input data (SDATA input), B₀ to B₇, are clocked serially into the enhancement register on the rising edge of SCLK, MSB (B₀) first. The enhancement register is double buffered to prevent inadvertent control changes during serial loading, with buffer capture of the serially entered data performed on the falling edge of E_WR according to the timing diagram shown in *Figure 4*. After the falling edge of E_WR, the data provide control bits as shown in *Table 9* will have their bit functionality enabled by asserting the ENH input "low".

Direct Interface Mode

Direct Interface Mode is selected by setting the "Direct" input "high".

Counter control bits are set directly at the pins as shown in *Table 7* and *Table 8*.

Table 7. Secondary Register Programming

Interface Mode	ENH	R ₅	R ₄	M ₈	M ₇	Pre_en	M ₆	M ₅	M ₄	M ₃	M ₂	M ₁	Mo	R ₃	R ₂	R ₁	R ₀	A ₃	A ₂	A ₁	A ₀	ADDR
Direct	1	R ₅	R_4	M ₈	M ₇	Pre_en	M ₆	M ₅	M_4	Мз	M ₂	M ₁	M ₀	R_3	R_2	R ₁	R_0	A_3	A_2	A ₁	A_0	Х
Serial*	1	B ₀	B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇	B ₈	B ₉	B ₁₀	B ₁₁	B ₁₂	B ₁₃	B ₁₄	B ₁₅	B ₁₆	B ₁₇	B ₁₈	B ₁₉	0

Note: * Serial data clocked serially on SCLK rising edge while E_WR "low" and captured in secondary register on S_WR rising edge.

(last in) LSB

Table 8. Auxiliary Register Programming

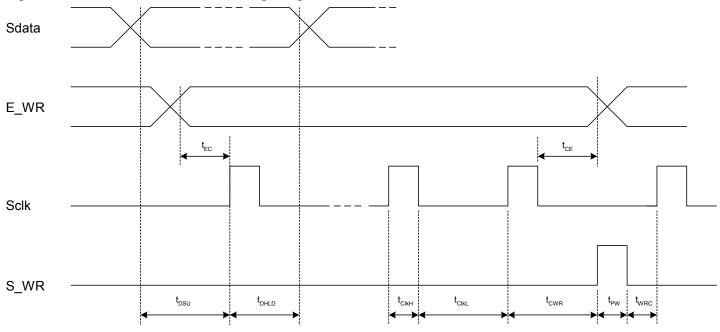
Interface Mode	ENH	K ₁₇	K ₁₆	K ₁₅	K ₁₄	K ₁₃	K ₁₂	K ₁₁	K ₁₀	K ₉	K ₈	K ₇	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	K ₀	Rsrv	Rsrv	ADDR
Direct	1	K ₁₇	K ₁₆	K ₁₅	K ₁₄	K ₁₃	K ₁₂	K ₁₁	K ₁₀	K ₉	K ₈	K ₇	K ₆	K ₅	K_4	K ₃	K ₂	K ₁	K ₀	Х	Х	Х
Serial*	1	B ₀	B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇	B ₈	B ₉	B ₁₀	B ₁₁	B ₁₂	B ₁₃	B ₁₄	B ₁₅	B ₁₆	B ₁₇	B ₁₈	B ₁₉	1

Note: * Serial data clocked serially on SCLK rising edge while E_WR "low" and captured in secondary register on S_WR rising edge.

(last in) LSB

Table 9. Enhancement Register Programming

Interface Mode	ENH	Reserved	Reserved	f _p Output	Power Down	Counter Load	MSEL Output	f _c Output	LD Disable
Serial*	0	B ₀	B ₁	B_2	B ₃	B ₄	B ₅	B ₆	B ₇


Note: * Serial data clocked serially on SCLK rising edge while E_WR "high" and captured in the double buffer on E_WR falling edge.

(last in) LSB

Figure 4. Serial Interface Mode Timing Diagram

Enhancement Register

The functions of the enhancement register bits are shown below with all bits active "high".

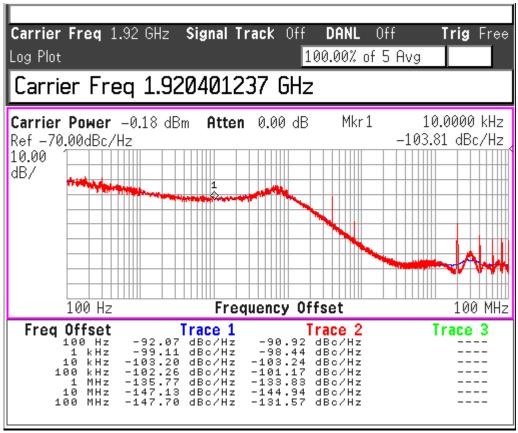
Table 10. Enhancement Register Bit Functionality

	Bit Function	Description
Bit 0	Reserve*	Reserved.
Bit 1	Reserve*	Reserved.
Bit 2	f _p output	Drives the M counter output onto the D _{OUT} output.
Bit 3	Power down	Power down of all functions except programming interface.
Bit 4	Counter load	Immediate and continuous load of counter programming.
Bit 5	MSEL output	Drives the internal dual modulus prescaler modulus select (MSEL) onto the D _{OUT} output.
Bit 6	f _c output	Drives the reference counter output onto the D _{OUT} output.
Bit 7	LD disable	Disables the LD pin for quieter operation.

Note: * Program to 0.

Phase Detector

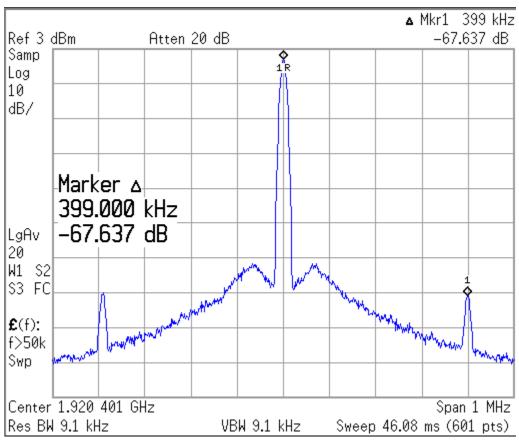
The phase detector is triggered by rising edges from the main counter (f_p) and the reference counter (f_c). It has two outputs, namely PD_ \overline{U} , and PD_ \overline{D} . If the divided VCO leads the divided reference in phase or frequency (f_p leads f_c), PD_ \overline{D} pulses "low". If the divided reference leads the divided VCO in phase or frequency (f_c leads f_p), PD_ \overline{U} pulses "low". The width of either pulse is directly proportional to phase offset between the two input signals, f_p and f_c .


For the UP and DOWN mode, PD_ \overline{U} and PD_ \overline{D} drive an active loop filter which controls the VCO tune voltage. The phase detector gain is equal to V_{DD} / 2π .

 $PD_{\overline{U}}$ pulses cause an increase in VCO frequency and $PD_{\overline{D}}$ pulses cause a decrease in VCO frequency, for a positive kV VCO.

A lock detect output, LD is also provided, via the pin C_{EXT} . C_{EXT} is the logical "NAND" of PD_ \overline{U} and PD_ \overline{D} waveforms, which is driven through a series 2 k Ω resistor. Connecting C_{EXT} to an external shunt capacitor provides low pass filtering of this signal. C_{EXT} also drives the input of an internal inverting comparator with an open drain output. Thus LD is an "AND" function of PD_ \overline{U} and PD_ \overline{D} .

Figure 5. Typical Phase Noise


A typical phase noise plot is shown below. "Trace 1" is the smoothed average and "Trace 2" is the raw data.

Test conditions: MASH 1-1 mode, F_{OUT} = 1.9204 GHz, $F_{COMPARISON}$ = 20 MHz, V_{DD} = 3.3V, temp = +25 °C, loop bandwidth = 50 kHz.

Figure 6. Typical Spurious Plot

Test conditions: Frequency step = 400 kHz, loop bandwidth = 50 kHz, $\overline{F_{OUT}}$ = 1.9204 GHz, $\overline{F_{COMPARISON}}$ = 20 MHz, MASH 1–1, $\overline{V_{DD}}$ = 3.3V, temp = +25 °C.

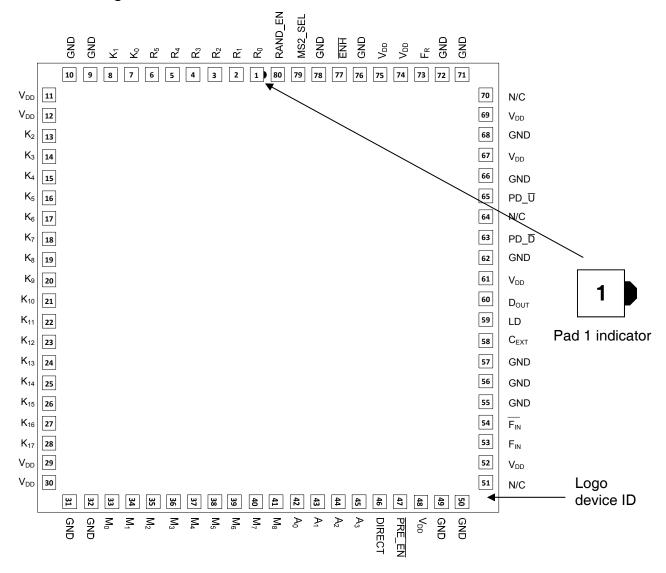


Table 11. Mechanical Specifications

Parameter	Min	Тур	Max	Unit	Test Condition
Die size, drawn (x,y)		3306 × 3306		μm	As drawn
Die size, singulated (x,y)*	3522 × 3470 3652 × 3470	3622 × 3570 3752 × 3570	3722 × 3670 3852 × 3670	μm	Including excess sapphire, max. tolerance = ±100 µm
Wafer thickness	180	200	220	μm	
Wafer size		150		mm	

Note: * There are two different singulated die sizes per reticle.

Figure 7. Pad Numbering^{1,2}

Notes:

- 1. All pad locations originate from the die center and refer to the center of the pad.
- 2. Minimum pad pitch is 150 µm. Pad openings are 90 µm.

Table 12. Pin Coordinates

Pin #	-	Pin Center (μm)			
	Pin Name	Х	Υ		
1	R0	-75.0	1578.8		
2	R1	-225.0	1578.8		
3	R2	-375.0	1578.8		
4	R3	-525.0	1578.8		
5	R4	-675.0	1578.8		
6	R5	-825.0	1578.8		
7	K0	-975.0	1578.8		
8	K1	-1125.0	1578.8		
9	GND	-1275.0	1578.8		
10	GND	-1425.0	1578.8		
11	V_{DD}	-1578.8	1425.0		
12	V _{DD}	-1578.8	1275.0		
13	K2	-1578.8	1125.0		
14	КЗ	-1578.8	975.0		
15	K4	-1578.8	825.0		
16	K5	-1578.8	675.0		
17	K6	-1578.8	525.0		
18	K7	-1578.8	375.0		
19	K8	-1578.8	225.0		
20	K9	-1578.8	75.0		
21	K10	-1578.8	-75.0		
22	K11	-1578.8	-225.0		
23	K12	-1578.8	-375.0		
24	K13	-1578.8	-525.0		
25	K14	-1578.8	-675.0		
26	K15	-1578.8	-825.0		
27	K16	-1578.8	-975.0		
28	K17	-1578.8	-1125.0		
29	V _{DD}	-1578.8	-1275.0		
30	V _{DD}	-1578.8	-1425.0		
31	GND	-1425.0	-1578.8		
32	GND	-1275.0	-1578.8		
33	MO	-1125.0	-1578.8		
34	M1	-975.0	-1578.8		
35	M2	-825.0	-1578.8		
36	M3	-675.0	-1578.8		
37	M4	-525.0	-1578.8		
38	M5	-375.0	-1578.8		
39	M6	-225.0	-1578.8		
40	M7	-75.0	-1578.8		

Pin #		Pin Center (μm)			
	Pin Name	X	Υ		
41	M8	75.0	-1578.8		
42	Α0	225.0	-1578.8		
43	A1	375.0	-1578.8		
44	A2	525.0	-1578.8		
45	A3	675.0	-1578.8		
46	DIRECT	825.0	-1578.8		
47	PRE_EN	975.0	-1578.8		
48	V_{DD}	1125.0	-1578.8		
49	GND	1275.0	-1578.8		
50	GND	1425.0	-1578.8		
51	V_{DD}	1578.8	-1425.0		
52	V_{DD}	1578.8	-1275.0		
53	F _{IN}	1578.8	-1125.0		
54	F _{IN}	1578.8	-975.0		
55	GND	1578.8	-825.0		
56	GND	1578.8	-675.0		
57	GND	1578.8	-525.0		
58	C _{EXT}	1578.8	-375.0		
59	LD	1578.8	-225.0		
60	DO	1578.8	-75.0		
61	V_{DD}	1578.8	75.0		
62	GND	1578.8	225.0		
63	$PD_{\overline{D}}$	1578.8	375.0		
64	NC	1578.8	525.0		
65	PD $_{\overline{U}}$	1578.8	675.0		
66	GND	1578.8	825.0		
67	V_{DD}	1578.8	975.0		
68	GND	1578.8	1125.0		
69	V_{DD}	1578.8	1275.0		
70	V_{DD}	1578.8	1425.0		
71	GND	1425.0	1578.8		
72	GND	1275.0	1578.8		
73	F _R	1125.0	1578.8		
74	V_{DD}	975.0	1578.8		
75	V_{DD}	825.0	1578.8		
76	GND	675.0	1578.8		
77	ENH	525.0	1578.8		
78	GND	375.0	1578.8		
79	MASH2SEL	225.0	1578.8		
80	RAND_EN	75.0	1578.8		

Table 13. Ordering Information

Order Code	Part Marking	Description	Specification	Package	Shipping Method
97632–98*	FA97632	Engineering die		Waffle pack	Waffle pack (5 units max)
97632–99	FA97632	Flight die	81-0015	Waffle pack	100 units / waffle pack
97632-00	PE97632 EK	Evaluation kit			1 / Box

Note: * The 97632-98 die are ES (engineering sample) units intended as initial evaluation devices for customers of the 97632-99 flight die. The 97632-98 ES die provide the same electrical functionality and performance as the 97632-99 flight die, but is processed to a non-compliant flow (e.g. no QCI coverage or element evaluation data). These die are obtained from non-qualified wafers so are not suitable for qualification, production, radiation testing or flight use.

Sales Contact and Information

For sales and contact information please visit www.psemi.com.

<u>Advance Information</u>: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. <u>Preliminary Specification</u>: The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product. <u>Product Specification</u>: The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

The information in this datasheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party. Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Pregrine name, logo, UltraCMOS and UTSi are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com.

Document No. DOC-01626-3 | UltraCMOS® RFIC Solutions